Locating Features in Distributed Systems

Sharon Simmons, Dennis Edwards, Norman Wilde
Department of Computer Science, University of West Florida
11000 University Parkway, Pensacola, Florida, USA

Abstract

In distributed systems, just as in conventional soft-
ware, it is often necessary to locate the software
components that implement a particular user fea-
ture. Several dynamic analysis methods have been
proposed to address this feature location problem in
conventional software. Most compare traces of ex-
ecution that exercise different combinations of fea-
tures.

The feature location problem for distributed sys-
tems has complexities beyond those found in se-
quential systems; namely, concurrent processes and
lack of a total ordering of events. This paper
introduces a dynamic analysis technique for dis-
tributed systems that addresses these complexities.
Our methodology defines a component relevance in-
dex that can be computed for each software com-
ponent in the system. Repeated execution of the
feature yields more precise indexes for the compo-
nents. The software components can then be ranked
to identify those most relevant to the task at hand.

A small case study is presented to illustrate the
formalism and how it might be used in practice.
Keywords: Distributed Systems, Feature Lo-
cation, Causality, Software Component Loca-

tion

1 Introduction

Despite all the other changes in Computer Sci-
ence in the last 30 years, a large proportion of
programmer time continues to be spent deal-
ing with existing code. Whether the task is
described as ”software maintenance”, ”soft-
ware evolution”, ”incremental development”
or ”component integration”, it involves under-

standing complex code, often written by oth-
ers, and then either modifying the code or tai-
loring new code to work with existing code.
Such tasks are difficult and error-prone par-
tially because the existing code is often difficult
to understand.

Since software changes are often initiated by
users, their change requests often refer to ”fea-
tures” of the software. User features rarely in-
volve a single software component. The inter-
actions of several components must be under-
stood to effectively and safely make a change.

Thus while a user of a software system may
view it as providing a series of features, to
make a change the programmer must view it
as a collection of software components. The
feature location problem involves deducing the
mapping between a feature and the key soft-
ware components involved in its implementa-
tion. This problem has received some atten-
tion in the Software Engineering literature for
sequential programs. Several proposals are
based on programming slicing[1], static analy-
sis [2, 3], and dynamic analysis[4, 5, 6, 7, 8, 9].

Our goal is to develop a feature location
methodology for distributed systems. A fea-
ture in a distributed system is likely to in-
volve not only interactions between different
software components, but also interactions of
components executing concurrently on differ-
ent processors. The objective is to provide a
mapping between a feature and the key soft-
ware components involved in its implementa-
tion. For our purposes, a feature is any episod-

www.manaraa.com

ically occurring service provided to a user. The
user may choose to define the system’s fea-
tures in any way he chooses, provided only that
he can identify when each feature occurs and
when it does not. Features are most commonly
initiated by user input but even a bug may be
thought of as a feature if it is observable and
identifiable.

The definition of software component is like-
wise flexible. Software components may be
classes, individual objects, subroutines, spe-
cific lines of code, or even message types. The
only restriction is that it must be possible to
observe when components are used.

2 System Model and A Com-
ponent Relevance Index

We model a distributed system as a set,
C={c1,c2,...,¢q,...,cQ}, of software compo-
nents. As software components execute, they
generate events in the N different processes
of the system, P;...Py. The events on pro-
cess P; are identified by the set ;. All events
in B; = {e},e?,...,el,...} are totally ordered
temporally.

The set F contains all events in the system
and is the union of the events from each indi-
vidual process,i.e., E = F1UEsU...UEy. The
events in F are only partially ordered.

A software component, c,, is the source of
an event, e{, if event e{ was the direct result
of the execution of ¢;. The function ¢() maps
the event to the source component. That is,
cq = 0(el) if ¢4 is the source of e].

While each event will map onto a single com-
ponent, the inverse does not hold. Consider
the execution of a single statement component
within a loop. Each time the component is
executed, it produces a unique event. All the
events created by the execution of that state-
ment will map back to the single component.

Figure 1 shows our system model. The left
side of the figure shows the code components.
These code components are executed giving
rise to events in different processes, as shown in
the time lines on the right of the figure. The

Components Feature Interval

Y e—ne
0 Pl
Map Function | & & e:’
8 Py
Cr=oa(el) 2
(e Ay L]
o .
5 .
2z
L -
5 Py_y
s
—_— = PI\

(

Figure 1: The System Model

mapping between the two is provided by the
function §().

We define causal relationships among events
following the work of Lamport[10]. Event e
happens before event ¢/, written e — €', if the
execution of e can have a causal affect on the
execution of ¢/. The three conditions for — are
as follows.

1. Events e and €’ are executed in the same
process and e temporally precedes e’.

2. Event e is the transmission of message m
and ¢’ is the receipt of the same message
m.

3. Event e — €’ and ¢’/ — ¢€'.

Each execution of a feature is associated
with an interval of events defined by the start
event of the feature ef and the end event of the
feature eg’-. The interval consists of the start
event, the end event, and all events that both
causally follow the start event and causally pre-
cede the end event. Note that the start event
and the end event may be on different pro-
cesses. The set I, for the k’th execution of

the feature contains the events in the interval.

I, = Ae: e?—>e/\e—>e?}u{e§,e? (1)
Suppose we have f observations of the fea-
ture that give us f intervals in which the fea-
ture was active. We use I* to represent the set
of such intervals, I* =1 UL U...UI;.
We define a component relevance indez, pe,
as the proportion of executions of component

www.manaraa.com

¢ that occur when the feature is active. The
value of p. ranges from 0.0 to 1.0. If a compo-
nent is strongly related to a feature then most
of its executions will occur when the feature is
active and p. will be close to 1.0. At the other
extreme, unrelated components, executed only
when the feature is not active, will have a p. of
0.0. The following weighting function is used
to distinguish events that are, or are not, in
the combined interval.

w(e) = {(1)

The weights of different events are combined
using the following estimator for p.:

ifeeI*
ifedI* (2)

Y. wle)

. e:c=6(e)
e = ere=ooyi @

If the data consists of a small number of in-
tervals there can be substantial error of esti-
mation. Suppose, for example, that we be-
gin the execution of the system and take three
one-minute intervals, one every fifteen minutes.
And, if by chance, there is also a timer trig-
gered event that happens twice an hour. If that
timer expires during the first interval, then it
will again expire during the last interval. All of
the timer events would have occurred in I* and
pe would be 1.0, although there is only a coin-
cidental relationship between the timer event
and the feature.

The solution is to collect more data, exe-
cuting the feature at random but following a
consistent operational profile. The errors in p.
caused by such accidents should diminish leav-
ing values near 1.0 for strongly related compo-
nents and values near zero for unrelated com-
ponents.

3 A Case Study

A small case study serves to illustrate the ap-
plication of the component relevance index.
The Gunner program is a simple text-based

game developed as a programming exercise in
several courses. It simulates a medieval gun-
ner firing a cannon at a castle. The program
has two main features: move the gun and take
a shot. The program calculates the trajectory
of a cannonball based on user input and draws
the trajectory on the screen.

The case study used a distributed version of
Gunner written using MPI[11, 12]. One process
maintained information on the gun and the
gunner, another tracked the list of players and
their scores, a third computed the trajectory
path, and a fourth provided a user interface.
The processes were distributed across a Linux
cluster. Process interaction was restricted to
asynchronous MPI message passing. The dif-
ferent processes collectively amounted to ap-
proximately 1900 lines of C++ source code.

We instrumented Gunner at all function en-
tries and exits, as well as at all MPI function
calls which resulted in 114 software compo-
nents. Sequence numbers were appended to
MPI messages to allow causal relationships of
events to be derived from the traces [13]. To
simulate the operation of a more complex sys-
tem, delays were inserted into each function
and random noise events were added, as might
be caused by background processing.

Two different circumstances are examined in
detail. In the first, intervals are approximately
delimited since complete instrumentation is ei-
ther not possible or requires knowledge of the
system not currently possessed. The second
circumstance has the advantage of precise in-
terval endpoints generated by code instrumen-
tation.

To see the effect of approximate versus pre-
cise intervals in the study of Gunner, we iden-
tified the code in the user interface process
where the mowve the gun feature is initiated and
completed. Instrumentation generated precise
start and stop events. To approximate impre-
cision in defining the start and stop times, we
added a random time between —1 and 1 second
to the precise intervals. With precise intervals,
the only source of error was the random back-
ground noise while, with the generated approx-
imate intervals, incorrect start and stop times

www.manaraa.com

1F i

+ .
0.8F i 4

Pe

0.2F:: i

0 5 10 15 20 25 30 35 40
Intervals

Figure 2: p. values for related and noise

provided an additional source of errors.

The goal of the case study was to investigate
properties of the feature location methodol-
ogy that would be important to a programmer.
Specifically, we sought to identify the number
of features repetitions needed before p. values
converge. Additionally, we wanted to quantify
the discrimination p. values made between fea-
ture related and unrelated components.

A driver program executed Gunner repeat-
edly using an operational profile of 10% move
the gun to 90% take a shot operations. To ob-
serve convergence, values of p. for the move
the gun feature were calculated using from
one through forty feature repetitions. The se-
quence was repeated 50 times from which the
mean and standard deviation were computed.

Figure 2 shows the convergence of the p, val-
ues. The horizontal axis is the number of inter-
vals I.. The bars show the mean and standard
deviation of the p. for that number of intervals.

The top results are for a typical strongly re-
lated component where the bottom results are
for background noise. As can be seen, p. for
this component converged quickly to a value
of 0.88. A value of 1.0 is not attained because
the simulated user error introduces a small, but
significant, probability that an event generated
by the component is not in any of the collected
intervals. However, 0.88 is among the largest
of the p. values found (see the third row in
Table 1) so the methodology establishes this
component as one that the programmer should
investigate. Using precise start and stop times

resulted in the software component having a p,
of 1.0 in all runs.

The p. is low throughout for a typical noise
component, converging to a value of 0.03. The
results for precise intervals are similar, since
the errors in start and stop times do not effect
the probability of seeing a random noise event.

One final way of analyzing the results is to
consider the ranking of components. We imag-
ine that a programmer repeats the feature sev-
eral times until the p. values roughly stabilize,
and then investigates the top 10% to 15% as
important for the feature.

In the Gunner study, we chose to examine
the top 10% of the 114 components. These
eleven rankings stabilized after 10 intervals.
Table 1 lists these components showing the
mean and standard deviation of p. values for
precise and approximate intervals. There is a
clear break in the table between the top nine
components and the others. The top nine have
a p. above 0.89 for precise intervals and above
0.49 for approximate intervals, while the re-
maining components have values of roughly
0.10 or less.

A check of these components in the Gunner
code confirms that the top nine are, in fact,
heavily used in the move the gun feature. The
remaining two components are involved in pro-
ducing the screen display and are shared by
both move the gun and other features. Note
that the p. values for precise intervals differ
from the p. for approximate intervals, but the
same top components are identified. In both
cases, the methodology provides a sharp dis-
crimination between components that are im-
portant for the feature and components that
are shared or unrelated.

4 Conclusions

This paper has described a method for software
component location in distributed systems us-
ing dynamic analysis. We have shown that
time intervals containing the execution of a fea-
ture may be defined based on Lamport’s work
on causal orderings of events. The component

www.manaraa.com

‘ Event ‘ Precise

H Approximate ‘

1.0000 £ 0.0000

0.9460 £ 0.0699

1.0000 = 0.0000

0.8838 £ 0.0981

1.0000 £ 0.0000

0.8838 £ 0.0981

1.0000 <+ 0.0000

0.8838 £ 0.0981

0.8970 £ 0.0278

0.7395 + 0.1106

1.0000 =+ 0.0000

0.5407 £ 0.1633

1.0000 + 0.0000

0.4896 £+ 0.1594

1.0000 £ 0.0000

0.4980 £+ 0.1715

0.8970 £+ 0.0278

0.4829 £+ 0.1471

0.1048 £+ 0.0373

0.0906 & 0.0331

‘ Function
validate_gunner Entry
validate_gunner Exit
moveGun Send
gunner _display Entry
doEmptyLayoutWithGunner | Entry
gunner _display Exit
moveGun Exit
moveGun Entry
doEmptyLayoutWithGunner | Exit
Graphics Entry
Graphics Exit

0.1048 £+ 0.0373

0.0906 & 0.0331

Table 1: Top 10% of p. components

relevance index may then be computed using
traces of intervals in which the feature was ac-
tive. The component relevance index is sub-
ject to statistical error, but can be addressed
by repetitive execution of the feature.

While the Gunner case study is not necessar-
ily representative of results expected with pro-
duction distributed software, the component
relevance index values did converge rapidly and
discriminate sharply. The components identi-
fied were important for the understanding of
the feature.

We believe that this work is a step toward
the development of effective tools to assist pro-
grammers in meeting the challenges presented
by distributed software systems. Incorporat-
ing our methodology into monitoring systems,
ranging from laboratory testing to field sys-
tems, can provide insight into software compo-
nent location.

References

[1] Mark Weiser,
when debugging,” Communications of the
ACM, vol. 25, no. 7, pp. 446-452, July
1982.

“Programmers use slices

[2] Ted Biggerstaff, Bharat Mitbander, and
Dallas Webster, “Program understand-
ing and the concept assignment problem,”

Communications of the ACM, vol. 37, no.
5, pp. 72-83, May 1994.

[3] Kumrong Chen and Vaclav Rajlich, “Case
study of feature location using depen-
dence graph,” in Proceedings of the 8th In-
ternational Workshop on Program Com-
prehension - IWPC 2000, Los Alamitos,
California, June 2000, IEEE Computer
Society, pp. 241-249.

[4] Norman Wilde and Michael Scully, “Soft-
ware reconnaissance: Mapping program
features to code,” Journal of Software

Maintenance: Research and Practice, vol.
7, pp. 49-62, January 1995.

[5] J. Deprez and A. Lakhotia, “A formal-
ism to automate mapping from program
features to code,” in Proceedings of the
8 International Workshop on Program
Comprehension - IWPC 2000, Los Alami-
tos, California, June 2000, IEEE Com-
puter Society, pp. 69-78.

[6) W. Eric Wong, Joseph R. Horgan,
Swapna S. Gokhale, and Kishor S.
Trivedi, “Locating program features us-
ing execution slices,” in 1999 IEEE Sym-
posium on Application-Specific Systems
and Software Engineering and Technol-
ogy, March 1999, p. 194.

www.manaraa.com

[7]

[11]

[12]

[13]

Hira Agrawal, James Alberi, Joseph Hor-
gan, J. Jenny Li, Saul London, W. Eric
Wong, Sudipto Ghosh, and Norman
Wilde, “Mining system tests to aid soft-
ware maintenance,” IEEE Computer, vol.
31, no. 7, pp. 64-73, July 1998.

Norman Wilde, Michelle Buckellew,
Henry Page, and Vaclav Rajlich, “A case
study of feature location in unstructured
legacy fortran code,” in Proceedings
of the Fifth Furopean Conference on
Software Maintenance and Reengineering
- CSMR’01. TEEE Computer Society,
March 2001, pp. 68-76.

Thomas Eisenbarth, Rainer Koschke, and
Daniel Simon, “Incremental location
of combined features for large-scale pro-
grams,” in Proceedings of the IEEE Inter-
national Conference on Software Mainte-
nance, Montreal, Canada, October 2002,
pp. 273-282.

L. Lamport, “Time, clocks, and the or-
dering of events in a distributed system,”
Communications of the ACM, vol. 21, no.
7, pp. 558-565, 1978.

Message Passing Interface Forum, “MPI:
A message-passing interface standard
(version 1.1),” Tech. Rep., MPI-Forum,
http://www.mpi-forum.org, 1995.

Message Passing Interface Forum, “MPI-
2: Extensions to the message-passing
interface,” Tech. Rep., MPI-Forum,
http://www.mpi-forum.org, July 1997.

J. M. Hélary, G. Melideo, and M. Ray-
nal, “Tracking causality in distributed
systems: a suite of efficient protocols,”
in SIROCCO 2000: The 7 Interna-

tional Colloquium on Structural Infor-
mation and Communication Complezity.
June 2000, pp. 181-195, Carleton Univer-
sity Press.

www.manharaa.com

